
ECON 897 Test (Week 4)
Aug 7, 2015

Important: This is a closed-book test. No books or lecture notes are permitted. You have

120 minutes to complete the test. Answer all questions. You can use all the results covered in

class, but please make sure the conditions are satisfied. Write your name on each blue book and

label each question clearly. Write legibly. Good luck!

If you use want to use a theorem that we proved in class, be sure to say exactly which

theorem you are using, state all of its assumptions and be sure that they are satisfied. Otherwise,

you will be given partial credit.

1. (15 points) Let f : R2 −→ R3, and g : R3 −→ R defined by:

g(x, y, z) = xy + yz + zx

f(x, y) = (xy, x cos y, x sin y)

(a) (5 points) Are the functions f and g differentiable? Be sure to say why they are or

why they aren’t.

Proof. Yes, they are because their partial derivatives exist and are continuous.

(b) (5 points) Define h = g ◦ f . Find the representation matrix of (Dh)(x,y).

Proof. Apply the chain rule.

(c) (5 points) Do the representation matrices of (D2f)(x,y) and (D2g)(x,y,z) exist? If they

do, find them.

Proof. The representation matrix for the second derivative of g exists, since the function

goes to R. However, there does not exist a matrix representation of (D2f)(x,y), since the

function goes to R3.

2. (20 points) Suppose there are n goods. To each price vector p = (p1, · · · , pn) ∈ Rn++ corre-

sponds a unique demand vector x = (x1, · · · , xn) ∈ Rn++ implicitly defined by the following

n equations:

U1(x1, · · · , xn) = p1
...

...
...

Un(x1, · · · , xn) = pn
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where U = (U1, · · · , Un) : Rn++ → Rn++ is continuously differentiable and the representation

matrix of DU is a negative definite matrix.

(a) (10 points) Prove that if the price of ith good increases, then the demand for this good

decreases, i.e. ∂xi
∂pi

< 0, 1 ≤ i ≤ n. (Recall a symmetric matrix A is negative definite if

for all x 6= 0, xTAx < 0.)

Proof. Same as in homework. Here, I wanted you to explicitly say that, since the inverse

of DU is negative definite, then for all i ∈ {1, . . . , n}:

∂xi
∂pi

= eti(DU)−1ei < 0

(b) (10 points) If n = 2, find expressions for ∂xi
∂pj

, for i, j ∈ {1, 2}.

Proof. You just need to use the implicit function theorem and know how to find the

inverse of a 2× 2 matrix.

3. (15 points) One of the separating hyperplane theorems that we proved was: Let D ⊆ Rn

be compact and convex, and E ⊆ Rn be closed and convex. Assume D ∩E = ∅. Then, there

exists a hyperplane H(p, a) such that p · e < a for all e ∈ E and p · d > a for all d ∈ D. Give

an example of a case in which the set D is not compact and, therefore, there does not exist

such a hyperplane.

Proof. I made a mistake on this question. I wanted to ask for an example in which the theo-

rem fails if the word compact were replaced by the word closed. Think about this example!

As the question just asked to omit the word compact, the example is pretty easy. Take, for

example, [0, 1) and [1, 2]. These sets satisfy all the conditions for the theorem to apply, but

cannot be strictly separated.

4. (20 points) Let f : Rn −→ R be homogeneous of degree 1 and quasi-concave. Prove that f

is concave.

Remember that f is homogeneous of degree 1 if f(λx) = λf(x), for all λ 6= 0.
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Proof. Let x, y ∈ Rn, and λ ∈ (0, 1). Since f(x) > 0 and f(y) > 0, there exists θ > 0 such

that θf(λx) = f((1− λ)y).

Since f is homogeneous of degree 1, this is equivalent to f(θλx) = f((1− λ)y). Consider the

following linear combination between θλx and (1− λ)y:

(
1

1 + θ

)
(θλx) +

(
θ

1 + θ

)
((1− λ)y)

Since f is quasi-concave:

f

((
1

1 + θ

)
(θλx) +

(
θ

1 + θ

)
((1− λ)y)

)
= f

((
θ

1 + θ

)
(λx) +

(
θ

1 + θ

)
((1− λ)y)

)

=

(
θ

1 + θ

)
f ((λx) + ((1− λ)y)) ≥

(
1

1 + θ

)
f(θλx) +

(
θ

1 + θ

)
f((1− λ)y)

=

(
θ

1 + θ

)
f(λx) +

(
θ

1 + θ

)
f((1− λ)y)

⇔ f ((λx) + ((1− λ)y)) ≥ f(λx) + f((1− λ)y)

5. (30 points) Let U : Rn+ −→ R be continuous, quasi-concave and increasing1. Let x∗ ∈ Rn++.

(a) (10 points) Prove that there exists a p ∈ Rn and M ∈ R such that p · x∗ ≤ M and

p · x ≥M for all x such that U(x) ≥ U(x∗).

Proof. U is quasi-concave if, and only if, the upper contour set, Cα, is convex for all

α ∈ R, where Cα is defined as:

Cα = {x ∈ Rn|U(x) ≥ α}

Consider the upper contour set at α = U(x∗). Then, the set CU(x∗) = {x ∈ Rn|U(x) ≥
U(x∗)} is convex. Clearly, x∗ /∈ int(CU(x∗)). Otherwise, there would exist an ε-ball

around x∗ such that B(x∗, ε) ⊆ CU(x∗), which means that, for λ < 1 sufficiently close to

1, by continuity of U , U(λx∗) ≥ U(x∗). This would contradict U being increasing.

Thus, by the supporting hyperplane theorem, there exists p ∈ Rn and M , such that

p · x∗ ≤M and p · x ≥M for all x such that U(x) ≥ U(x∗).

1Definition: A function F : Rn −→ R is increasing if F (x) > F (y) whenever x >> y, where x >> y means that

xi > yi for all i ∈ {1, . . . , n}.
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(b) (10 points) Prove that p · x > M if x is such that U(x) > U(x∗).

Proof. Assume not. Then, there exists an x with U(x) > U(x∗) and p · x = M . Notice

that by continuity of U , for λ < 1 sufficiently close to 1, U(λx) > U(x∗). Moreover,

p · λx = λ(p · x) < M , which cannot happen.

(c) (10 points) Prove that, in fact, p ∈ Rn+.

Proof. Assume that there exists i0 ∈ {1, . . . , n}, such that pi0 < 0. Fix λ > 1 and

x′ = λx∗. Since U is increasing, U(x′) > U(x∗). Moreover, U(x′ + Nei0) > U(x∗)

for any N > 0, where ei0 is the unit vector in the i0−th component. Note that for

N sufficiently large, p · (x′ + Nei0) < M , which cannot happen. Thus, pi > 0 for all

i ∈ {1, . . . , n}.
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